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This study explores the possibility of non-linear parameter estimation through
use of Volterra and Wiener theories. An engineering approach is suggested by
considering a single-degree-of-freedom system with cubic stiffness non-linearity.
A third order kernel representation of the system response is taken. Using
frequency domain analysis the first order and third order kernels are obtained. A
third order kernel factor is synthesised from this first order kernel and is processed
along with the third order kernel for estimation of the non-linear parameter.
Damping is taken to be linear in the analysis. The procedure is illustrated through
numerical simulation. The assumptions involved and the approximations are
discussed. The influence of excitation force, linear damping parameter and
probable measurement noise on the estimates is illustrated through non-dimen-
sional simulation.
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1. INTRODUCTION

Volterra and Wiener theories describe the relation between the output and the
input in a functional form that cover a wide class of non-linearities. The
application of these theories have so far been generally restricted to estimation of
first and higher order kernels. Their structures, however, also offer rigorous
theoretical platforms that can be explored for non-linear parameter identification.

Most of the commonly employed non-linear parameter estimation procedures
work upon the first order frequency response function (FRF) and measure the
distortion of the plot compared to one from the linear system. Otherwise, FRFs
are taken repeatedly and the changes with different input levels are taken as
measures of non-linearity.

Volterra [1] and Wiener [2] kernel theories provide the concepts of linear,
bilinear, trilinear etc. kernels, which upon convolution with the excitation force
and subsequent summation can be employed to represent the response of a
non-linear system. Despite their attractive properties for analysis of non-linear
physical systems, applications in relatively fewer situations [3–5] have been found
for kernel estimation. The major reason behind this is the difficulty associated with
the measurements of the kernels of the system and the enormous amount of

0022–460X/99/150805+17 $30.00/0 7 1999 Academic Press



. .   . . 806

computational effort required. French and Butz [6] simplified the computational
problem significantly by suggesting the use of fast Fourier transforms in
conjunction with a set of exponential functions as filters, instead of the orthogonal
set of Laguerre functions used by Wiener or the alternative approach, suggested
by Lee and Schetzen [7], of using cross-correlation techniques and time delay
functions. Jahedi and Ahmadi [8] further applied the Wiener–Hermite expansion
to non-stationary random vibration of a Duffing oscillator. Orabi and Ahmadi [9]
have presented the non-stationary mean-square and autocorrelation responses of
a Duffing oscillator using a truncated Wiener–Hermite series. Gifford and
Tomlinson [10] have shown how a series of higher order FRFs, based on Volterra
representation, provides a logical and appropriate way of extending linear system
theory to cover non-linear systems. They illustrated correlation measurements for
a non-linear beam under random excitation. Bendat [11] derived a range of
formulae for calculation of linear, bilinear and trilinear Volterra response
functions from measured input and output data and further [12, 13] illustrated
their applications to non-linear systems.

The work cited above primarily deal with representation of the response of a
non-linear system in terms of Volterra or equivalent Wiener kernels and estimation
of the first and higher order kernels. However, numerical studies are scant and
restricted to kernel estimation up to the second order. In the present work, an
attempt has been made to extend the scope of these theories beyond kernel
estimation, to the problem of extraction of the linear and non-linear parameters
of the governing equation of the system. A single-degree-of-freedom system with
cubic non-linearity in the stiffness term is considered. An engineering approach for
parameter estimation is developed through a third order Volterra kernel
representation of the system response. Damping is taken as linear in this analysis.
Using frequency domain analysis, the first and third order kernels are extracted
from measurements of the applied force and response. A third order kernel factor
is synthesised from the first order kernel and is processed along with the third order
kernel for estimation of the non-linear parameter. The procedure is illustrated
through numerical simulation. The assumptions involved and the approximations
are discussed. The influence of excitation force, linear damping parameter and
probable measurement noise on the estimates is illustrated through non-dimen-
sional simulation.

2. VOLTERRA SERIES REPRESENTATION OF RESPONSE

A system involving cubic non-linearity is considered

mẍ+ cẋ+ kx+ kNx3 = f(t), (1)

where m is the mass of the system considered, kN is the non-linear stiffness
parameter to be estimated, while c and k are the unknown linear damping and
stiffness terms. f(t) in the above equation represents excitation given to the system.

The above equation is rewritten in non-dimensional form as

h0(t)+2jh'(t)+ h(t)+ lh3(t)= f�(t), (2)
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where (') denotes differentiation with respect to t, with t=vnt and

vn =zk/m , j= c/2mvn , h= x/x*, (3)

x*=Fmax /k, l= kNF2
max/k3, f�(t)= f(t)/Fmax .

The system response, employing Volterra theory, is taken to be of the following
form

h(t)=H[ f�(t)]

= s
a

n=0

Hn [ f�(t)], (4)

where Hn [ f�(t)] is the nth order Volterra operator given by

Hn [ f�(t)]=g
a

−a

· · · g
a

−a

hn (t1, . . . , tn )f�(t− t1) · · · f�(t− tn ) dt1 · · · dtn , (5)

with the nth order Volterra kernel

hn (t1, . . . tn )=0 for tj Q 0, j=1, 2 · · · n. (6)

3. SYNTHESIS OF HIGHER ORDER VOLTERRA KERNEL FACTORS

The approach suggested by Schetzen [14] is employed, in which the Laplace
transform of the first order kernel, H1(s) is first defined in terms of the linear
parameters of the system, namely vn and j. The expressions for higher order kernel
transforms H2(s), H3(s) etc. are consequently synthesised from the first order
transform, H1(s), and the non-linear parameter l.

Replacing the applied force f�(t) by cf�(t), the system response from equation (4)
is

s
a

n=1

cnHn [f�(t)]= s
a

n=1

cnhn (t), (7)

where, for convenience

hn (t)=Hn [ f�(t)]. (8)

Substituting the new force and the response of equation (7) into equation (2) gives

6 s
a

n=1

cnhn (t)70 +2j6 s
a

n=1

cnhn (t)7' +6 s
a

n=1

cnhn (t)7+ l6 s
a

n=1

cnhn (t)7
3

= cf�(t).

(9)

The above power series representation of the governing equation is solved by
equating the coefficients of like powers of c.
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Equating the coefficients of the first power of c, one obtains

h01 (t)+2jh'1 (t)+ h1(t)= f�(t). (10)

Noting from equation (4) that h1(t), the first term in the Volterra representation
of h(t), is the solution of the linear part of the differential equation (2), i.e.,

H1[ f�(t)]= h1(t), (11)

the Laplace transform of H1 is

H1(s)=1/(s2 +2js+1). (12)

Similarly, by equating the coefficients of c2, one gets

h02 (t)+2jh'2 (t)+ h2(t)=0. (13)

The above requires the second order kernel h2 to be identically zero, i.e.,

h2(t1, t2)=0. (14)

By equating the coefficients of c3, one gets

h03 (t)+2jh'3 (t)+ h3(t)=−lh3
1 (t). (15)

Similar to the case in equation (10), the above requires

h3(t)=−lH1[h3
1 (t)]. (16)

Since

h3(t)=H3[ f�(t)], (17)

one gets

H3[ f�(t)]=−lH1[h3
1 (t)], (18)

and in terms of Laplace transforms,

H3(s1, s2, s3)= l[C(s1, s2, s3)], (19)

where the synthesised third order kernel factor, C(s1, s2, s3), has been defined as

C(s1, s2, s3)=−H1(s1)H1(s2)H1(s3)H1(s1 + s2 + s3). (20)

4. EXTRACTION OF WIENER KERNELS FROM RESPONSE

The two major problems, in the practical application of the Volterra series
analysis, namely, measurement of individual Volterra kernels and convergence of
the Volterra series, are circumvented through the use of Wiener functionals for
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a stationary Gaussian white noise excitation f�(t), with variance A. The Wiener
kernel representation of this response is

h(t)=w0 +g
a

−a

w1(t1)f�(t− t1) dt1

+g
a

−a g
a

−a

w2(t1, t2)f�(t− t1)f�(t− t2) dt1 dt2 −A g
a

−a

w2(t1, t1) dt1

+g
a

−a g
a

−a g
a

−a

w3(t1, t2, t3)f�(t− t1)f�(t− t2)f�(t− t3) dt1 dt2 dt3

−3A g
a

−a g
a

−a

w3(t1, t1, t2)f�(t− t2) dt1 dt2

+ · · · , (21)

whereby owing to the orthogonality property [2] between the Wiener and Volterra
kernels, the individual kernels bear the following mutual relations (for a third
order system response representation)

h3(t1, t2, t3)=w3(t1, t2, t3), h2(t1, t2)=w2(t1, t2),

h1(t1)=w1(t1)+w1(3)(t1), h0 =w0 +w0(2)(t1),
(22)

with

w1(3)(t1)=−3A g
a

−a

w3(t1, t2, t2) dt2, w0(2) =−A g
a

−a

w2(t1, t1) dt1.

In view of the stated difficulties in the measurement of Volterra kernels, the
measured system response is employed in the proposed parameter estimation
algorithm, to extract the Wiener kernels. These Wiener kernels are then employed
to generate the Volterra kernels, using the relationships of equations (22). The
higher order ‘‘measured’’ Volterra kernels, thus obtained, are equated to those
obtained from the synthesis procedure previously described for non-linear
parameter estimation.

Extraction of Wiener kernels from measured response involves an enormous
amount of data processing, since the kernels are multi-dimensional. The Laguerre
filters proposed by Wiener [2] or the alternative approach, of using
cross-correlation techniques and time delay filters [7] to perform the extraction,
present formidable amounts of data processing. The use of a complex filter in the
frequency domain [6] reduces the computational effort and is also suitable for such
analysis since the Wiener kernel theory involves multidimensional convolutions.
The scheme employing a complex exponential filter is shown in Figure 1(a).
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Employing the Fourier transform representations

f�(t)=g
a

−a

F�(v) ejvt dv, h(t)=g
a

−a

h(v) ejvt dv,

w1(t1)=g
a

−a

W1(v1) ejv1t1 dv1,

w2(t1, t2)=g
a

−a g
a

−a

W2(v1, v2) ej(v1t1 +v2t2) dv1 dv2,

w3(t1, t2, t3)=g
a

−a g
a

−a g
a

−a

W3(v1, v2, v3) ej(v1t1 +v2t2 +v3t3) dv1 dv2 dv3, (23)

Figure 1. (a) Scheme for measurement of the first order kernel W1(v). (b) Scheme for
measurement of the third order kernel W3(v, v, v).
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equation (21) can be expressed as

h(t)=W0 +g
a

−a

W1(v1)F�(v1) e jv1t dv1

+g
a

−a g
a

−a

W2(v1, v2)F�(v1)F�(v2) e j(v1 +v2)t dv1 dv2

−A g
a

−a

W2(v2, −v2) dv2

+g
a

−a g
a

−a g
a

−a

W3(v1, v2, v3)F�(v1)F�(v2)F�(v3)

×e j(v1 +v2 +v3)t dv1 dv2 dv3

−3A g
a

−a g
a

−a

W3(v1, v2, −v2)F�(v1) dv1 dv2 + · · · . (24)

The output z(t), from the exponential filter is

z(t)=g
a

−a

ejvt1f�(t− t1) dt1

=F�*(v) e−jvt1, (25)
where F�*(v) is the complex conjugate of F�(v).

The ensemble average of the output of the circuit, Figure 1(a), is then obtained
as
�h(t)z(t)�= �F�*(v)� e−jvtW0

+g
a

−a

W1(v1)�F�(v1)F�*(v)� e−jt(v1 −v) dv1

+g
a

−a g
a

−a

W2(v1, v2)�F�(v1)F�(v2)F�*(v)�e−jt(v1 +v2 −v) dv1 dv2

−A�F�*(v)� e−jvt g
a

−a

W2(v2, −v2) dv2

+g
a

−a g
a

−a g
a

−a

W3(v1, v2, v3)�F�(v1)F�(v2)F�(v3)F�*(v)�

×e−jt(v1 +v2 +v3 −v) dv1 dv2 dv3

−3A g
a

−a g
a

−a

W3(v1, v2, −v2)�F�(v1)F�*(v)� e−jt(v1 −v) dv1 dv2

+ · · · . (26)
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For a stationary Gaussian white noise input f�(t) with zero mean and variance
A, the Fourier transform, F�(v), is also a stationary Gaussian white noise process
and the ensemble averages of the products transformed functions are, according
to Raemer [15],

�F�(v)�=0

�F�(v1)F�(v2)�=Ad(v1 +v2)

�F�(v1)F�(v2)F�(v3)�=0

�F�(v1)F�(v2)F�(v3)F�(v4)�=A2[d(v1 +v2)d(v3 +v4)]

+A2[d(v1 +v3)d(v2 +v4)]

+A2[d(v1 +v4)d(v2 +v4)]. (27)

The relations of equation (27) reduce equation (26) to

�h(t)z(t)�=AW1(v). (28)

However, due to the equivalence of time and ensemble averages, the ensemble
average �h(t)z(t)� can also be written as

�h(t)z(t)�= lim
T:a

1
T g

T/2

−T/2

h(t)z(t) dt, (29)

giving

�h(t)z(t)�=F�*(v)h(v). (30)

Equations (28) and (30) give

AW1(v)=F�*(v)h(v),

from which the expression for the Fourier transform of the first order Wiener
kernel is

W1(v)=F�*(v)h(v)/A. (31)

For measurement of the third order kernel, a circuit involving three exponential
delay filters, as shown in Figure 1(b), is considered. The output, z(t), from the
exponential filters is

z(t)=g
a

−a

e−jv1t1 f�(t− t1) dt1 g
a

−a

e−jv2t2 f�(t− t2) dt2 g
a

−a

e−jv3t3 f�(t− t3) dt3.

(32)
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The above, after some algebraic manipulations, reduces to

z(t)=F�(−v1)F�(−v2)F�(−v3) e−j(v1 +v2 +v3)t.

The ensemble average of the output of the circuit is now derived as

�h(t)z(t)�=A2[W1(v1)d(−v2 −v3) e j(−v2 −v3)t

+W1(v2)d(−v1 −v3) e j(−v1 −v3)t

+W1(v3)d(−v1 −v2) e j(−v1 −v2)t]+6A3W3(v1, v2, v3). (33)

The equivalence of time and ensemble averages gives

�h(t)z(t)�= lim
T:a

1
T g

T/2

−T/2

h(t)z(t) dt. (34)

Equation (34) can be reduced to

�h(t)z(t)�=F�(−v1)F�(−v2)F�(−v3)h(v1 +v2 +v3). (35)

Equations (33) and (35) give the expression for the measurement of the Fourier
transform of the third order Wiener Kernel as

W3(v1, v2, v3)= (1/6A3)[F�*(v1)F�*(v2)F�*(v3)h(v1 +v2 +v3)]

−(1/6A)[W1(v1)d(v2 +v3)+W1(v2)d(v1 +v3)

+W1(v3)d(v1 +v2)]. (36)

W3(v1, v2, v3) forms a multi-dimensional surface on the (v1, v2, v3) axes.
Measurements are made for special trispectral kernels with v1 =v2 =v3 =v.
These kernels are functions of only one variable v and are much easier to compute
and interpret. Bendat [11] has termed such single function transforms for Volterra
series as Special Trispectral Kernel Transforms. The Special Trispectral Wiener
Kernel Transform can be readily written from equation (36) as

W3(v, v, v)= (1/6A3)[{F�*(v)}3h(3v)]− (1/2A)[W1(v)d(v)]. (37)

5. PARAMETER ESTIMATION

The Special Trispectral Wiener Kernel Transforms can be extracted from the
measurement of the applied random force and the system response and employing
equations (31) and (37). Subsequently, for a third order representation of the
system response, noting the equivalence between the Volterra and Wiener Kernels
(equation (22)), the third order Special Trispectral Volterra Kernel Transform can
be computed from

H3(v, v, v)=W3(v, v, v)

= (1/6A3)[{F�*(v)}3h(3v)]− (1/2A)[W1(v)d(v)]. (38)
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Similarly, from the relations of equations (22), the expression for the first order
Volterra kernel, in terms of the measured Wiener Kernels, becomes

H1(v)=W1(v)+W1(3)(v), (39)

where W1(v) is as given in equation (31) and W1(3)(v) is the first order derived
kernel,

W1(3)(v)=−3A g
a

−a

W3(v, v2, −v2) dv2. (40)

The linear parameters, vn and j can be readily obtained by equating the
measured first order Volterra kernel (of equation (39)) to its analytical expression
given in equation (12). Standard curve fitting techniques can be used. These
estimated linear parameters, vn and j, are employed further in the estimation of
the non-linear parameter l. The estimate for l is obtained by equating the
synthesized expression (equation (19)) and the measured value (equation (38)) of
the third order Volterra kernels of the system. Thus,

l= {(1/6A3)[{F�*(v)}3h(3v)]− (1/2A)[W1(v)d(v)]}/[C(v, v, v)]. (41)

The procedure is illustrated through numerical simulation of the response for
the non-dimensional equation with cubic non-linearity, equation (2). Owing to the
statistical nature of the estimation procedure, the response is simulated for various
values of the non-linearity parameter, l. This response is subsequently processed
through the proposed procedure for estimation of parameters, including l. The
errors involved in the computational procedure are discussed by comparison
between the estimated value of l and that used in the simulation of the response.
(For an experimental study, it may also be useful to refer to an estimation
procedure based on the exact probability density solution of the Duffing oscillator
[16], to make an additional check on the estimates.) The procedure is also repeated
for various values of the damping ratio, j.

The forcing function in the equation is the normalised random force, f�(t), with
zero mean value. The excitation force is simulated through random number
generating subroutine and is normalised with respect to its maximum value Fmax .
The response is generated numerically for 4096 number of instances in the
non-dimensional time (t) range 0–2048, using a standard fourth order
Runge–Kutta subroutine. The response is computed from 2000 samples of the
simulated random force. (The influence of the number of samples in the ensemble
is discussed later.)

The power spectrum of the random force averaged over the ensemble of 2000
samples is shown in Figure 2(a). The corresponding ensemble average of the power
spectrum of the response for non-linear parameter l=0·10 and a damping ratio,
j=0·01, can be seen in Figure 2(b). The first order Volterra kernel, H1(v), is then
computed using the expression of equation (39) over the ensembles of the force
and response (Figure 3(a)). The linear parameters vn and j are computed from
H1(v) through routine modal analysis procedures [17]. The linear parameters thus
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Figure 2. (a) Power spectrum of the input force. (b) Power spectrum of the response
(l=0·1; j=0·01).

estimated are vn =1·009 (rad/non-dimensional time t)=0·1606 (cycles/non-di-
mensional time t) and j=0·012. The curve of Figure 3(b) shows the error incurred
in the estimate of H1(v) due to the statistical nature of the Fast Fourier Transform
computational procedure and the finite length of samples (4096 in the present
case). The normalised random error can be seen to be at its maximum when it is
in the vicinity of the natural frequency of the linear part of the system
(1·0 rad/non-dimensional time t i.e., 0·159 cycles/non-dimensional time t). For the
ensemble size of 2000, the error in the frequency range 0·0–0·10 is less than 4%.
It can be inferred that the normalised error for the higher order kernels would
show a similar trend and the error, in the estimate of the non-linear parameter
l, can be expected to be less in the frequency zone 0·0–0·10.

The non-linear estimation is carried out for a range of values of the non-linear
parameter l and damping ratios j. The response of the non-dimensional equation
(2) is numerically simulated for l=1·00, 0·10 and 0·01, while keeping the damping
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ratio j fixed at 0·01. It may be noted from equation (3) that the non-linear
parameter l of the non-dimensional equation (2) includes both the nonlinear
stiffness term kN and Fmax , the maximum value of the applied force. A low value
of l for a fixed value of kN , implies a low value of Fmax , while a high value of l

for the same kN , implies a high Fmax and vice versa. The results for such a
non-dimensional parameter can be readily employed to design experiments and
decide the excitation level for an expected non-linearity of a given system.

The estimated results for the third order kernel are depicted in Figure 4. The
third order kernel factor C(v, v, v), synthesised from the measured first order
kernel H1(v), and the measured third order kernel W3(v, v, v), are shown in
Figure 4(a), (c) and (e) for l=1·00, 0·1 and 0·01, respectively (j=0·01). It is to
be noted here that while the first order kernel is estimated in the entire available
frequency range 0·0–1·0, the third order kernels involving a 3v factor have to be
restricted to one-third of this frequency zone (i.e., 0·0–0·33). It can be observed

Figure 3. First order estimates (l=0·01; j=0·01). (a) Estimate of H1 (v); (b) Error in the
estimate of H1 (v).
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Figure 4. Estimates of third order kernels and non-linearity parameter l for various simulation
values of l (j=0·01). Estimates of C(v, v, v) (————) and W3 (v, v, v) (——) for simulation value
of l=1·00 (a), 0·10 (c) and 0·01 (e). Estimate of l for simulation value of l=1·00 (b), 0·10 (d)
and 0·01 (f).

from the figures that while the measured third order kernel W3(v, v, v) is
reasonably accurate in showing the harmonic at vn /3 (at non-dimensional
frequency=0·053), the identification of the harmonic at vn (at non-dimensional
frequency=0·159) is weak, the best approximation being in the case of l=1·0.
The estimation of l from these kernels is therefore restricted to the frequency zone
of 0·0–0·1. The estimates of the non-linear parameter l, obtained in accordance
with the relationship (41), are shown in Figures 4(b), (d) and (f). A fourth order
polynomial curve regressed through the estimates of l, over the frequency range,
is also shown in Figures 4(b), (d) and (f). The mean values of the estimates of l

are found to be 1·08, 0·14 and 0·05, respectively. The order of the magnitude can
be seen to be estimated correctly, while a good accuracy can be seen to be obtained
for l=1·0 (Figure 4(b)). It is to be noted here that the response representation
of equation (24) has been restricted to include kernels only up to the third order,
in order to keep the computations to a manageable level. Inclusion of higher order
kernels (5th, 7th order) in the response representation can be expected to improve
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the accuracy of the estimates with increased computational effort. Another source
of inaccuracy in the estimates is the finite length of the samples and the ensemble
size. The non-dimensional time interval for sampling has been taken as 0·5, and
4096 samples are collected for an ensemble for this numerical simulation which
gives a frequency bandwidth of 21·0 cycles/non-dimensional time t and a
frequency resolution of 0·488×10−3 cycles/non-dimensional time t.

It was observed that increasing the sample size beyond 500 has insignificant
influence on the first order estimates. The influence on the third order estimates
can be seen from the curves of Figures 5(a)–(d). The figures show the power
spectrum of the input for ensemble sizes 500, 1000, 1500 and 2000 along with the
corresponding third order kernel function C(v, v, v) and the measured third
order Wiener kernel, W3(v, v, v), which are both observed to become more
refined with an increasing number of samples in the ensemble. In the present study
the ensemble size has been limited to 2000. (It may also be noted that the numerical
fourth order Runge–Kutta procedure of response simulation is also a source of
error.)

Errors can be expected to be encountered during an experiment in the
measurement of the excitation force and the response of a system as well. The
influence of measurement noise is studied by contaminating the simulated force
and response signals, with 5% simulated random noise. The frequency range is
split into two and Figure 6(a) shows the third order kernel function C(v, v, v)
and W3(v, v, v) for 5% noise in both input and output, in the frequency zone

Figure 5. Influence of sample size on input auto-power spectrum and third order estimates
(simulation values l=0·10; j=0·01). Sample size=500 (a), 1000 (b), 1500 (c) and 2000 (d). ,
Input power spectrum; —— measured Wiener kernel; ————, third order kernel factor.
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Figure 6. Effect of measurement noise on third order estimates (simulation values l=0·10;
j=0·01). C (v, v, v) and W3 (v, v, v) in the frequency range of (a) 0·0–0·03 and (b) 0·03–0·33.
——, w3 with 5% noise; · · · · · , C with 5% noise; ·–·–, w3 with no noise; – – –, C with no noise.

of interest 0·00–0·03 on a magnified scale, while the remaining portions of the
curves are shown in Figure 6(b). Other estimates are also observed to be similarly
robust to measurement noise influence.
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Figure 7. Influence of damping on third order and l estimates (simulation value of l=1·00).
Estimates of C (v, v, v) and W3 (v, v, v) for simulation value of j=0·01 (a) and 0·001 (c).
Estimate of l for simulation value of j=0·01 (b) and 0·001 (d).

Apart from the non-linear parameter l, the other non-dimensional parameter
contained by the governing equation (2) is the damping ratio j. Numerical
simulation is carried out to check the validity of the estimation procedure for two
different damping values. Figures 7(a)–(d) show the third order estimates and the
estimated nonlinear parameter for damping values j=0·01 and 0·001 (for
l=1·0). The estimates can be seen to be sensitive to damping and for identical
values of the non-linear parameter l, the results are more accurate for higher
damping.

6. REMARKS

The procedure developed gives good engineering estimates of the non-linear
parameter. The estimates are satisfactory for a range of system damping. It also
appears to be robust to measurement noise. The analysis presented is in
non-dimensional form and can be suitably employed to design experiments. The
accuracy of the estimates, as shown, is improved with the increase in the number
of force and response samples over which averaging is carried out. The accuracy
can be improved by involving kernels of orders higher than three and also by
increasing the ensemble size. The increase in the computational effort may,
however, need to be explored. Extension of the present procedures to systems with
more than one degree of freedom and involving linear and non-linear coupling
can be explored through incorporation of first and higher order cross-kernel
concepts.
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